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ABSTRACT

We consider the motion of two rings of liquids with different viscosities

and densities lying between concentric cylinders that rotate with the sare

angular velocity Q. Gravity Is neglected and interfacial tension is Included.

We show that rigid motions are globally stable and that the shape of the in-

terface which separates the two fluids is determined by a minimizing problem

for a potential P defined as the negative of the sum of the kinetic energies

v- of two rigid motions plus the surface energy of the interface. We show that
the stable interface between fluids has a constant radius when heavy fluid is

outside and J is larger than one, where J - -d$[[pJ]g2/T where d is the mean

*radius, [[p]] < 0 the density difference and T the surface tension. When J is

negative the heavy fluid is inside and the interface must be corrugated. The

potential of flows with heavy fluid outside is smaller, thus relatively more

stable, than when light fluid is outside, whenever J is large or for any J

when the volume ratio m of heavy to light fluid is greater than one. These

results give partial explanation of the stability and shape of rollers Of vis-

cous oils rotating in water and the corrugation of the free surface of films

coating rotating cylinders.
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SIGNIFICANCE AND EXPLANATION

The authors study the stability of flows of two immiscible fluids between

two cylinders rotating at the same frequency. They show that this problem can

be reduced to the minimization of a certain functional. Necessary and suffi-[-.---

cient conditions for the stability of centrifuged" configurations with the

heavier fluid on the outside, are given. It is shown that the viscosity plays

no role in the stability problem. This is different from shearing flows

between rotating cylinders, where it is in fact possible to have the heavier

fluid inside.
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The responsibility for the wording and views expressed in this descriptive

summary lies with MRC and not with the authors of this report.
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STABILITY OF RIGID MOTIONS AND ROLLERS IN
BICOMPONENT FLOWS OF IMMISCIBLE LIQUIDS

Daniel D. Joseph* , I , Y. Renardy2 , M. Renardy2 , and K. Nguyen**

1. INTRODUCTION

We consider the flow of two Immiscible liquids with different viscosities

* ,. and densities lying between concentric cylinders both of' which rotate with the

same angular velocity 12. We neglect gravity and include Interfacial tension.

We study the stability of steady rigid-body rotation in which the two fluids

are arranged in two rings with a given volume ratio. We show that rigid-body

rotation is globally stable, and the interface shape between the two fluids is

determined by a minimizing problem for a potential defined as the negative of

the sum of the kinetic energies of two rigid motions plus the surface energy

of the interface. We show that the interface between the two fluids has a

constant radius when the heavy fluid is outside and J is larger than one,

where J is defined in the abstract. This implies that centrifuged configura-

tions lie outside an interface of constant radius. We note that the stable

rollers of oil in water observed by Joseph, Nguyen and Beavers (1984) have

heavy fluid (water) outside an interface of essentially constant radius. The

rollers are maintained in nearly rigid motion by the high viscosity; there is

no outer cylinder, and the motion of the water 13 not rigid. We show that the
interface on rigid motions with heavy fluid inside must be corrugated. Photo-
graphs of corrugated interfaces of liquid films coating cylinders rotating in
air can be found in the papers of Yih (1960) and Moffatt (1977). Yih (1960)
gave a linear stability analysis for films coating cylinders rotating in air
and his results are consistent with ours.

The potential of flows with heavy fluid outside is smaller, thus rela-
* tively more stable, than when light fluid is outside, when J is large or for

any J when the volume ratio m of heavy to light fluid is greater than one.
This is consistent with the idea that configurations with heavier fluid outside
should be more stable because of the centrifugal force and that if the inner

* fluid is heavier, the rigid motion should be less stable no matter what the
* Department of Aerospace Engineering and Mechanics, University of Minnesota,

L . Minneapolis, MN 55455.
** Firestone Tire and Rubber Co., Akron, OH 44317.

lponsored by:
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2 United States Army under Contract No. DAAG-29-82-K0051.
The United States Army under Contract No. DAAG29-80-C-0041. This material
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* viscosities. The stability of flows in which viscosity differences are impor-

. tant depend strongly on the viscosity ratio. Rigid-body rotation involves no

- shear. As a result, the mechanism which we call lubrication stabilization

(Renardy & Joseph, 1984), in which thin layers of the less viscous fluid occupy

regions of high shear, is absent.

2. EQUATIONS OF MOTION AND INTERFACE CONDITIONS

Consider the flow of two immiscible liquids contained between two infin-

ite concentric cylinders. The perturbed regions occupied by liquid I and 2 are

denoted respectively as

V(t) - (r,Oxla S r S R(x,.Ot), -- x < -, 0 :S 8 S 2w),

V(t) - r,e,xjR(x.e,t) S r S b, -< < x < -. 0 S 8 S 21).

The stress is given by

T - -p1 * S, s 2. D Cu]. (2.1)

The equations of motion hold In each region

. div uL - 0, L - 1,2, (2.2)

P d - ug - - + div St, (2.3)

where u - eru. + eevt + exwl, 4 - p + pgr sine. Du) -(Vu + VuT), p, and p2

are the densities and p, and pz are the viscosities. In all that follows g - 0.

The cylinders at r -a and r - b rotate with some constant angular frequency

0. At the interface Z

F(x.r.e,t) = r - R(x,et) - 0, (2.4)

we have

aR vaR aR

at Fe w •.

4P"

% b %t*** * %~**
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-u We also require that the jumps across L

In the velocity, the ,,;hear stress and the difterence between the jump in the

normal stress and the surface tension force all vanish.

We are going to study spatially periodic solutions which are 2w/a periodic

in x and, of course, 21 periodic in e. The volume of each component fluid is

prescribed by specifying a mean radius

ds P (2.6)

where

(2.7)

def J dx dO.

Our convention is the fluid with subscript I is on the inside. The fluid on

the inside can be heavy or light. We are Interested in two cases
, .]

(A) The heavy fluid inside, a S r S RA(ex,t)

-" Ep > o, d RA (2.8)

(B) The heavy fluid is outside, RB(Oxt) S r S b

[[p)] < 0, d a RB* (2.9)

The volume ratio of heavy to light fluid is

dA - a3 - d8
mA MB . (2.10)

b 2 dA 2B - a

The volume of light fluid and the volume of heavy fluid Is fixed, indepenaent

% %.-a---
F-"-u 

"  
' ' ." "" P" "" " ", '. .''. . , , --= .- _ ' " " ", '% = ', " %* % %• " - -'=q . _ -
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of whether it is inside or outside when mA - mB. Then

V. 2 2'. * m ba 2 b*a

dA 1 M B (2.11)

The jump equations at r - R are

-([Cp)] + 2HT)n [S_) * n o0. (2.12)

-. where

2 2 22
RR88(1+R + RRxx(RR ) - R(+R 2R 2RReRxRxO

2H - (2.13)
(R2 + R + R2R)/2(

e x

2H is the sum of the principal curvatures, T is the surface tension, and n =

VF/IVFI and VF - e er - eRe - !xRx.

3. RIGID ROTATION OF TWO FLUIDS

The velocity

-..

_U. *eer ,  (3.1)

and the pressure

e D, (3.2)
2

where the constants (pD) are (p, D,) in V, and (p2,D) in V2. is a solution of

(2.2), (2.3) and (2.4) with S Identically zero. We suppose that R(e,xt), per-

*Odic in x and e, is prescribed and arbitrary. At r-R we have

-.4q

4 q,' r t .' ,"" "-. ., , ,*,, .- , ..• 1 .. . . .,
_ , . • ,.._.,., . ..,-" ",'""' ", "".'"r -",- ,.' -' , -,.' • " '. . . ,_ ."• --.. . .". • •". -• - . -. -,", . -
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S'.

[CO) 0.

(3.3)

Ui~pol - [C R' f[D)J.

We cannot satisfy the differential equation

[pc]) 4 2HT ( 0, (3.41)

expressing the jump condition for the normal component of the stress, for an

arbitrary given surface R(ex,t). We call (3.1) - (3.3) an "extended" rigid

motion and we prove that these motions are globally stable with the shape of

*O the Interface, and possibly the placement of heavy and light liquid determined

by a new minimum principle of classical type.

-. PERTURBATION EQUATIONS

Let u,p be the velocity and pressure in the deformed domain and let

U- UD +

._lP - pc

where u, = e 6V(r), and po(r) is the associated pressure. The function u, p and

S are perturbations. In designating components

U (u,v,w)

we suppress the caret overbar. All these quantities are defined in V1(t) and

V2(t). For the moment we leave open the possibility that [(V]) 0 0, (for rigid

motion [IV) = 0). The equations governing u and p are

u + !!o_ u Vu] -Vp V S, (4.1)

ta-. . . . . - o. (4.2)

NI S -s .1
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-2 The boundary conditions are

u(r-a) * u2(r-b) -0. (I.3a,b)

The interface conditions on r - R(x,O,t) are

[Cull - END - [[vVJ)] 0 (14.41)

U R .v+V aR (4.5)
at Rae

{cipJln + ((5]) n - [(p.J1n + 2flTn (41.6)

5. ENERGY EQUATIONS FOR NONLINEAR DISTURBANCES

Introduce the following notations:

* ()d 1,

* where

K t Rdedx +R*aR RddlF

and we are assuming that the disturbance flow Is 2s/o periodic In x.

To form the energy equation we multiply (14.1) by I!, integrate over V, and

V2, add and Use Reynolds transport theorem to show that
le,
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dt 2 >. (P T
%(u

and

".D .. . .. * 5
d * 2 )~ 51

For flow in circles with Uo - eerg we have

pZ' DC" io3 • - uvr d

which vanishes on rigid motions. Moreover, since u - u -uo is continuous

across E, we have

CCGn))), u-_.) (E-;n + n1*1)

-- u-) • n([Epo] + 2HT > (5.2)

where the last equality follows from (4.6). We next observe (see Joseph, II,

Eq. (96.11)) that

<2HTu n n ->, TdE. (5.3)

.0 Since T is constant, we have

.4. .. ,... ' . . . . .,...,.. . .... ,... . .'.. .' ..- ....... ' .. .".,.-,-.-. . . . . -- '

".,' ,,''. '. '',,.,',-,,.'' "'-,. ","",,."", . . .. ' . * . * .-. ..-.. "" ,- - .'-'-'-'-' . ..' .r . .,-' - . ,-,,qa ...
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<2HTu T 2n -T' )

where ((I)) is defined in (2.7).

Moreover, using (2.5), we find that

•VF I1 R"- - -U - -

Hence

U. _ * - ((n[pJ)R aR))

Since ((p.J "[Cp]]0R 2/2 + ((D]] is a function of R alone, there is a scalar

. function O(R),

4(R) [[p]ag2 (R'-d2)2 (5.4)

such that

((C~pR )) - .~ ((,O(R))); (5.5)
at dt

[6 in deriving (5.4) - (5.5), we used (2.6) to set

• °- d

dt ((R')) - 0.

Finally, we show that, for rigid motions where u • n . QRe/I VFj. we have

K . n(E[Po]] + 2HT)>E

.O((RR8([[p.]] * 2HT))) 0 (5.6)

-%

~.y.. ~ *p ~ %
.*. ,*.* -.-..... **- . ~-...*-.a.,,
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In deriving the first equality, we use n - VF/IVFI; then we note that since

[P)] is a function of R alone, there is a 2% periodic m(R) such that

"ROR[pOJ amRl/Be

which vanishes on Integrat on. We next use the expression (2.13) to write

2 1R X)] rR.RRlj
RR92H - + IVFI

S L IVFJ J

Since R(O,xt) is periodic In x and 0, the last Integral In (5.6) vanishes.

.* -Collecting all these results, we find that

d(E-N) -D, (5.7)
dt

where

E - u(

I -T(X/a)") - []))(

- . ((TR(-22))" .1/)

The function HER] Is the variable part of a "potential energy" PERJ for rigid

* motions. It is easily verified that

:-...-.-

-, . -
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":::K 1 . (-((ab)) * ((R")).lpf'/8,

K, - f((b )) - ((R)Jp,0'/8

1 the kinetic energy of a rigid motion in region V, and V, respectively. The

associated potential of this rigid motion Is the negative of the kinetic ener-

gies plus the surface energy

P def-K*2 T d

C , ]T((IR'(1+R )+R
.X.

-C. (5.9)

where C, and Ca are different constants. We may write (5.7) as

d(E.P) -D. (5.10)
dt

Equations (5.7) and (5.10) were derived by D. D. Joseph.

In the next section we shall show that rigid motions are globally stable,

as is the case with one fluid, but that the stable configurations of the rigid

*motions minimize P subject to the volume constraint (2.6).

It is useful to write the potential in a dimensionless form In which R - d

* 6 and (6,x,1/a) are made dimensionless with d and A - 6/d. Then, to within

constants, we may define a dimensionless potential

r 0 + a 1/)) + J(([21])), (5.11)

where

,. ... %,,, ,.'-., .' ".', . '..
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Sj . '[ 3])
*1

*1%

has the sign of [[p)). The constraint (2.6) implies that

((2A * A2)) - 0. (5.12)

This shows that the average deviation A - -1 + R/d from zero must be negative

if the volume of the two fluids is preserved.

It is necessary to remark that the representation r - R(Ox,t) of the free

surface is not completely general and It loses Its utility when the magni-

-.7 tude IAI of the deviation from the cylinder is equal to

min ad' d .(.3

If 1A1 2 then the Interface will touch one or the other of the cylinders,

and a smooth free surface will not be possible.

The linearized form of (5.11) for A near to zero is

-J P - (([J-1)A2 * A* A )).(.11

M- 10 + e a) (5.114)

6. STABILITY OF RIGID MOTION

The following results concern solutions of the equations which are smooth

for all time.

Theorem 1. Rigid motions are stable in the sense that periodic distur-

bance of rigid motion must decay in the mean. We first note that D > 0 on all

non zero disturbances of rigid motion. We are considering the stability of

flows with heavy fluid outside, -[[p33 - ps - p, > 0, or insicde, [[p]) > 0.

These two situations, called (A) and (B) in Section 2, are distinct in that they

cannot be connected by time dependent motions with smooth interfaces. We

choose u to be a disturbance of one or the other of these two possibilities.

Then the positivity of D Implies the decay of E + P. In fact, we could show

that there Is A depending on the viscosities and the densities, such that D 9

At where A depends on v,, v., p,, p,, u,. pa. Integrating (5.10) from t - 0 to t,

- % ... ..
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we rind that

E(t) * P(t) - E(0) * P(O) - D() dr
10

.5 E, Pe - 11 E() d-; (6.1)

t

..

It follows that

4 E(O) dr 5 E(0) P(O) - 9(t) P(t). (6.2)

Since P is bounded rrom below we conclude that

E(t) and D(t) are integrable. (6.3)

Moreover, assuming that E goes to 0 as t * *- P admits a finite limit as t

goes to *-.

Let us consider the limit configuration (E(e),P(-)) since E() - 0, this is

a rigid motion. To show that P(s) is a minimum of the functional P as R

varies we consider any rigid motion (E(O) - 0, P(O)) and assume that this rigid

motion goes to the rigid motion (E(-) - 0,P(-)) as t goes to *-. If P(O) 0

P(-), then the interface between the two liquids must have moved from the con-

figuration at t - 0 to the one at t - - and In this motion D(t) > 0 on an in-

terval with non zero measure. Then, from (5.10)

P(-) - P(O) * 4 D(t) dt 0 0, (6.4)

so that

-rp;, ., . % .% , ". .. . . . . . . . . , . . . . . .

' 4f r s e -m~ ~ m . i@. . . -. • t- . ..

,, ",.-.v' y,.- .,,. .- _- . .- .- . . ,. - - , .. - .- . . . . ,- , ,. - . . .- .. . . . . .. . .. . . . , . . . . . . .
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P() < P(O). (6.5)

Thus P decreases "z every change of configuration between rigid motions. Since

- P is a bounded from below functional of R, P must decrease to

P() 1 1 mP(t) *minP(R), (6.6)

where R' a d2 and R is periodic and continuously differentiable In x and 6.

We may describe the set of such periodic functions R with 2a ,d as a one

parameter family R(c). We assume that R(O) - R where

- min minP(R) R P(R) - P(R(c)). (6.7)

We must have:

0P dR - (.J
d C aRc)) . -( (F1HT a 0,12  2 0, (6.8)

where 2H denotes the curvature (2.13) evaluated on the minimizer R -R. Since
91 (c) - d2, we have

.4(0))) = O, (6.9)
o 

c dR

30 that R is orthogonal to constants. It follows now from (6.8) and

(6.9) that

AT C R(pJ c 2T * C 1)1d' (6.10)

where H is the mean value of H.
Equation (6.10) may be recognized as the differential equation arising

from the normal stress condition (2.12) on rigid motions.

It now follows that extended rigid motions, which are globally stable,

are actually hydrodynamically admissible, with a balanced normal stress equa-

.. .. .. . . .*,...*4 . . . . . . ' ',.', .. 4. -. h.4,,'." b 4,.- -, - " ..-% ,.,..,.• ,-. x% .-
' ~'* . V.~*"%*~'4 .~ 4~ ~ 4 ~4 ~ ~%*'%S

06'.d .
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tion, when tr.e interface R . R Is a mini rizer of (6.6). The stable rigid

motions satisfy (2.5) in the form

• *0.

where R is time independent in a rotating coordinate system.

Theorem 2. The stable configurations are those rigid motions which min-

imize P among C'(x,e) functions R(x,6) satisfying the volume constraint (2.6).

Consider first case (A) in which the heavy fluid is outside, J > 0. If J >

1, then P given by (5.14) is a minimum when a - 0.

Theorem 3. The cylindrical interface with constant radius R - d, is

stable against small disturbances if and only if J Z 1.

It is of interest to ask when R - d is a global minimum of P among all

interfaces of the form r - R(O.z) compatible with the volume constraint. This

question is answered by the following theorem of M. Renardy.

Theorem 4. The concentric interface R - d is a global minimum of P among

all interfaces r R(8,z) satisfying (3.4) if and only if J k 4

[

First we show that the criterion of theorem 4 Is sufficient for stability.

Certainly we have P Z P - TR + D'(p2-p 1 )R" , and It is sufficient to show

that R - d minimizes P. We set R" - d 2 (1+Y), hence Y is subject to the con-

aa
straints -1 + I Y 1 -1 and (M))- 0. We then have

--. - '"-. P = Td J(1' + J (1+Y)3))

_ Td ((1v"(Ti * J 1Y)- I * " J)). (6.11)
L 2 4J1

We define

0.- 1r
f Cy) * J (1+Y)- * + Jj. (6.12)

~~~~~-... ...- ,......:....,.. ..-.-.......-...... .... ,.. ... ,..... ... .. .....-. . ... .p....... ... , _,-..7 * "*a"", %.-,, .,- . . . . . - . -_' . . , .. . .. - .. % . . . . . . .-.-.-. .-. .-.-. ,-., . . . .• . - .. , .. . ' .. . . ,.
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The constant multiplying ' has been chosen such that f'(0) - 0. If J a

- ]3, then f has its minimum at Y 0 0, for Y In the range

* -1 ]
aa bt

- The criterion is also necessary for a global minimum. We can choose R

such that Be - 0, and, by choosing a small (long waves) we can make Hz as

* small as we like. It follows that it is also necessary that R - d minimizes

P if < then f 1 + < f(0), and the graph of f is sketched as

a" aa

Figure I. If we draw the tangent from the point (-I + di f(-1 + di)) as Indl-

* cated, it will touch the graph at a point a,f(a)) to the right of Y - 0. and it

will intersect the line Y - 0 at a value below f(O). This means that we can
a2

take a perturbation Y, alternating between the values -1 and a, such that

((M)) - 0. but ((f(y))) ( f(0).

Turning next to case B in which the heavy fluid is inside J<O we find that

- az
f(VY) is concave. Hence P will have minimizers only at boundary values -1 -

|#' b2

and -i + In an infinite cylinder, there will therefore be no minimizers of

P of the form r - R(e,z). In a finite cylinder, we cannot make Rz arbitrarily

"* small without also making Y small, and there can be stable motions with heavy

fluid inside, which have a corrugated free surface, as in the experiments of

Yih (1960) and Moffatt (1977). It would be of interest to determine these cor-

rugated shapes as a solution for the minimum problem of P. If J Is large, we

-' expect the amplitude of the corrugated surface to be also large and eventually
.as b'
violate the constraints -1 + - < -1 +

The results of this paper have some relevance for the problem of centri-
P.

01 fuging. Intuitively one expects that the heavy fluid will be outside if the
p'.

rate 0 of rotation is large, even if the heavy fluid were initially on the
p- inner cylinder. The transport of fluid from the inner to the outer cylinder is

a topologically complex process which cannot be handled in the frame of our

smooth parameterization of the interface. The transport of fluid from the

inner to the outer surface is also a physically complex process involving the

"~.. .. % % . . ...
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rupture of adhesion at both walls and possibly internal fracturing and healing

of the liquids themselves. These physical processes are not well understood,

* and they do not appear In our equations. Nevertheless, it is not unreasonable

to seek stable configurations among those which minimize P with respect al-so

to the position of heavy and light fluid.

We can compare the potentials PA and PB for flow with heavy fluid inside

.- [[p]] ) 0 and heavy fluid outside [[p]] < 0 under the condition that the

"" volume m, defined in Section 2, is fixed. The total kinetic energy KA when- the

heavy fluid with density p, Is inside is given by

KA Ks + K- R -a*)) + ((b4-RR A)

62 where ((RA)) - ((dA)). When the heavy fluid with density p& is outside

KB - K, • a - ((bl-RB)) - ((R2 a
where ((RB)) - ((dB)). Using (2.10), with mA - *B - m we f Ind that

((RA))- mb2+a, ((RB))-

S.The potentials are

S -A --KA +T I

PB -K13 *T LBI

where

I.,. I EA - .
,'.-* -

• * o"EA

% % %%.,..' -- .-.-...... .. %. .. ,.L--." .-. ;. ' .,".. .' -..- ","," ...- "- -"-"."-"- .'
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is the area of 1A. The difference in the potentials is

,A- PB- -KA KB VIEAI-IJBI)

[CO112' T("

Here [[p] - - p, > 0. If PA > PB then (B) with heavy fluid outside Is more

stable. Since ((R2)) - (d 2 )), we have

(([R2-d232)) - ((Rh)) - ((d')).

The potential difference may be written as

-((b4*'a-d'. d ) ']a+- [-d. 2 ] T(

A - 8 LB 2

(6.1)

Now, using (2.11), we eliminate d A and d B

UP110 2  2u(((b Z-a2 1)) ( 2RAA 2 R~~al *T, IF:'<<c a' '_ +<,- } [R - .], i-1 i1

(6.2)

Consider now the case of uncorrugated interfaces with RA - CA, RB - dB , EA

2 IdA, EB - 21dB. We find that

((p]] 2  (([b 2-a 2 ]2 ))
PA " PB M M .i)- 2wT((dA-dB)) (6.3)

where CA and dB are given in terms of m by (2.11). If the volume ratio m of

heavy (p,) to light (pa) fluid Is greater than one, then CA > dB . Hence PA > PB

when m > 1. If there is only a small amount of heavy fluid, m ( l and dB < CA

then PA > PB if [[pJ]92/T is large. In all these cases the configuration with

*~~~~ %~~' % %~.P.
I" " *."*.*-' ' ' .' *t." -" - -. . -°""" ""% --

"
-t-*- ." " •' ""•""°.'.""-" ", • " '"--'- -.- ' '" -I '"-'.



-19-

where dA and 05 are given In terms of m by (2.11). If the volume ratio mi of
"heavy (p, to light (p.) fluid is gre'ater than one, then dA ) db. Hence PA >

when m > 1. If there is only a small amount or heavy f luid, m < 1 and dB < dA
then PA > P8 if [[p])02/T is large. In all these cases the configuration with
heavy fluid outside is more stable. If [[p))02/T is small enough, then P

P5. and the configuration with heavy fluid inside is more stable. However our

earlier analysis showed that when the heavy fluid is inside, the RB(e.x) which

minimizes P is not everywhere equal to dB.

STABILITY OF ROLLERS

Rollers are Viscous fluid bodies which rotate as rigid wheels in fluids of

smaller viscosity. These rollers have been observed (Joseph, Nguyen and
Beavers, 1983) in bicomponent flows Of Immiscible liquids in several different

flow conf igurations: on a cylinder rotating in a box, between the four cylc'

inders of Taylors mill for studying straining flows, and separating dynamically

driven Taylor vortices between rotating cylinders.

The most interesting feature of the dynamics leading to the formation of

rollers is the fracturing of the visQou liquid at some critical level of the

stress. In this process the roller breaks away form the side wall and

relieves the high stress associated with no slip at the side wall. So in the

final, stable dynamics, rollers are lubricated by water and air on all sides.

The rollers rotate nearly as rigid bodies because they are so viscous. The

stability of rollers, as our analysis suggests, depends on the fact that the

'A.

density stratification is such as to prevent the centrifuging of the roller.

_ oThe viscosity ratio is probably not an important factor in the dynamics of

'a...stable rollers.

The water which surrounds the rollers in experiments is at rest near the

tank wall and cannot rotate rigidly. Therefore rollers are not a special case

of rigid motions studied in this paper. However the density stratification,
with water outside, does contribute to the stability of rollers, with a stabil"

izing term (EpV)6 2 at the interface, where V is the common velocity of fluid
particles on either side of the interface and 6 is the surface deflection; here

assumed small.

Rollers are unstable to non-axisymetric disturbances when the angular

*Velocity is high enough. This Instability is associated with Viscous shearing,

taSwl n antrttergdy hrfr olesaentaseilcs
oyrgdmtossuidi hsppr oee h est taiiain
with,~ wa- ousie doe -otiue otestblt o-olrs.lha tb

,:....' .:.,.....-,,. ... ,. .. ., . . ,... , .. . ... . . . '-*
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*which becomes important at higher speeds and with a possible unstable distri-

bution of angular momentum.

The low speed rollers are robustly stable. In our analysis we did not

*i. consider gravity, but gravity does enter into the dynamics of the stable rollr

• ers reported in the paper of Joseph, Nguyen and Beavers (1984) and here. In

experiments in which the top of the roller rotates in air the roller would

centrifuge out into the air were it not for gravity w:-ich on the small top

portion of the roller exposed to air, is nearly radial. A similar, but smaller

*effect due to gravity occurs at the bottom of the roller which Is pushed up by

gravity because the lighter oil is buoyant In water. Gravity tends to flatten

' rollers into right circular cylinders. To a degree the diameter of stable

* rollers can be controlled by gravity, with a tendency fo the roller to poke

its head into the air. We are able to change the diameter of the rollers by

changing the water level in the box. This effect of gravity is exhibited in

plates 7.1 a-c. Sketches of the side view of these plates is shown in Figure

7.1 ar-c.

The principal effect of gravity may be eliminated by submerging the

roller entirely In water, as in Plates 7.2(a) and (b). When the flattening

* effects of gravity are absent the shape of the interface on stable rollers is

strongly influenced by interfacial tension, with bounding surfaces in nearly

circular arcs, as in Figure 7.2(b). The pressure distribution in the water is

not a strong barrier to centrifuging and the dynamics of the roller in Plate

- 7.2 are closer to case B of this paper in which the heavy fluid is on the

- inside cylinder with a corrugated interface separating the two liquids.
m1,
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I- '. 8Plate
7 .1 (a)

Plate 7.1: Roller of silicone oil (p-0.95 gm/cc. Vj 95,000 cp) In water at
different water levels. The rod is made of plexiglass, 2 inches in diameter,
rotates at 10 RPM.

(a) The roller is very nearly in a solid body rotation with small shearing by
water at the roller rim. Part or the roller is in water and the other in air.
The roller is very stable, held together by hydrostatic pressure in water and
gravity in air.

%
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Plate
4 7. 1(b)

(b) Water is added to the box. The roller becomes larger by flattening out
btremains round and stable.

- Plate

.: 7. 1(c)

(c) More water Is added. The roller becomes even larger. The roller is now
completely submerged in water and is slightly out of round due to buoyancy.

LI
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Figure 7.1(a)

Figure 7.1(a): Sketch of the side view and front view of plate 7.1(a).

.1*

©' Figure 7.1(b)

Figure 7.1(b): Sketch of the side view and front view of Plate 7.1(b). Water
is added to the box. The diameter of the roller becomes larger, The shape of
the roller changes, conserving volume.

Figure 7.1(c)

Figure 7.1(c): Sketch corresponding to Plate 7.1(c).

% % .
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I-I
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Plate
(i 7.2(a)

*1<II

Plate 7.2 (a): Front view of a completely submerged roller rotating
at about 1.5 RPM.

Plate.1

Plae 72(b.. id viw o th sbmegedrolerof lat 7.(a.2b
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